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Functions Decreasing in Transposition with Applications to) '™ S g
Shock, Damage, and Down Tine

* *
M. Hollander , F. Proschan , and J. Sethuraman*

Florida State University, Tallahassee, Florida, USA

In this paper a large class of multivariate densities and frequen
functions, including the multivariate Poisson distribution and the com-
pound multivariate Poisson distribution, are shown to have the decreasing
in transposition property introduced by Hollander, Proschan, and Sethuraman
(1977, Ann. Statist. 5, 722-733). Applications relevant to reliability
are given, including applications to shock models,cumulation of damage,

and component down times.

1. INTRODUCTION AND PRELIMINARIES
In this paper we derive a basic theoren (Section 2, Theorem 2.1) show-
ing that a large cless of miltiveriete probability densities and frequency
functions possess the decreasing in transposition (DT) property (Defini-
tion 1.3) introduced by Hollander, Proschen, and Sethuraman [3] (HPS[3]).

Of particular interest are the multivariate Poisson distribution and the

compound multivariate Poisson distribution treated in Section 3. Then,

in Section 4, we consider applications arising in reliability. These ap-
plications pertain to shock models, cummulation of damage, and component
down times. In the remainder of this section we give some preliminaries,

including definitions and theorems, which will be useful in the sequél.
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HPS[3] define a partial ordering on n-dimensional Euclidean space

(Rn) presented in Definition 1.2 below.

DEFINITION 1.1. A vector x = (xl, cees xn) is said to be a simple
trensposition of a vector x' if x and x' agree in all but two coordinates,
sey i and j, i <,j,xi<xd,xi=xd, a.ndxj =xi;wewrite§§£'.

Thus x' is obtained from x by performing an inversion of a single

pair of coordinates that occur in their natural order in X.

DEFINITION 1.2, Let x and X' be two n-dimensional vectors such that

there exists a finite number of vectors {0, _)51, cvey _:gk in R® satisfying

x ___!0 §‘x1§ eag, gk = x%; i.e., x' is obtained from x bty a finite
number of simple transpositions. We say that x' is a transposition of x.

HPS [3] then define a class of functions as follows:

DEFINITION 1.3. Let A = (Al, cees An), where Al < A2 S cee S An

are n ordered values in R-. We say that £()A, x) is decreasing in trans-
position (DT) if:

(a) f(l", 3:_") = £(2, x) for each permutation w = (wl, e un) of the

indices 1, 2, ..., n, where A" = (A, s eoes A ) end
1 n
w
£ ®ix ;5 cep X o
'1 "h

(b) x ¥ x' implies that £(A, x) 2 £(}, x')

s deiibcnd
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The familiar concepts of majorization and Schur functions will be

used in this paper, and for completeness we recall their definitions.

DEFINITION 1.4. Let X[1] 2 ... 2 X be a decreasing rearrangement

of the coordinates of the vector x. Let x and y satisfy:

=]
=]

Then x is said to majorize y (we write x 2y).

DEFINITION 1.5. A function f from R into Rl is said to be Schur-

convex (Schur-concave) if x > y implies f(x) 2 (s)f(y).

HPS[3] derive basic properties of DT functions and show their rela-
tionship to other classes of functionms. ‘They show (HPS[3], Lemma
2.2) that vhen f£(A, x) is of the form g(A - x), £(), x) is a DT function

if and only if g(y) is a Schur-concave function. They also show (HPS(3],

Theorem 3.2) that the DT property is preserved under positive mixtures

and (HPS[3], Theorem 3.6) that the DT property is preserved under products
of positive DT functions. They also prove & "composition" theorem for
DT functions (HPS[3], Theorem 3.3) and a "preservation" theorem (#ps(3],

Theorem 3.7) for Schur-concave functions under an integral transform

where the kernel is DT.

A T e
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By restricting 52(1, z) in the HPS “composition" theorem to be of

the form g(y - z), where g(w) is Schur-concave, we have the following.

THEOREM 1.5. Let g, (x, y) be a DT function end g(u) be a Schur-

concave function such that
£(x,z) = [e&,(x, y)ely-z) anly)

is well-defined, where u is a positive permutation inveriant measure.

Then £{x , z) is a DT function.

Theorem 1.5 generzlizes the following result of Marshall and Olkin

(|;5] s Theorenm 2.1).

| THEOREM 1.6. (Marshell-Olkin, [5]). ILet g (x) end g,(x) be Schur-

concave functions such that
£(x) = fg(x - Ye,(y)auly)

is well-defined, vhere p is as in Theorem 1.5. Then f(x) is a Schur-concave

function.

2. DT PROPERTY OF OVERLAPPING SUNMS
In this section we state and prove our main theorem. Let, for

k=22, 35 veey 0,

A, = {x: 1 is a subset of size k from . PR ) | B (2.1)
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THEOREM 2.1. Let =~ = (s eees xn), {Xpp A e A}, k=2, ..., n,

be independent collections of random variables. Let X have a DT denmsity

function. Let the random variables in {XA, A€ Ak} be i.i.d. and have

& common log-.oncave density function 8 k=2, ..., n. Let, for
p T SRR

g =X + 3 ZxA : (2.2)
k=2 A: Ael\k and i€)

Then Z = (2 Z ) “as & LT density function.

l, ceey

REMARK 2.2. Note that the summands appearing in the Zl, Sy Zn overlap

considerably. For exemple, x12 appears in the expressions for Zl end 22,

X123 appeers in the expressions for Zl, Z,, and 23, etc. Thus the inheri-

29
tance of the DT propexty of ~ from that of X is complicated by the over-
lapping of the X'-.

To prove the main result, we shall find it helpful to have available

the following lemma:

LEMMA 2.3 let kx 2 2. Let {xl, Y€ Ak} be i.i.d. :1andom variables

with a common log-conceve density function g (with respect to the counting

measure on a lattice or - - © =~y was~vre). let

W= 3X R T PRSI (2.3)
A: AeAk and iel

Let f(w,, ..., wn) be the density function of W =(-~-1, «ees ¥ ). Then £

is a Schur-concave funciion.
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Proof. We will now give a proof for the case where g and f are den-
sity functions with respect to counting measures. The proof for the case :
where g and f are density functions with respect to Lebesgue measures is |
similar and will be omitted. .

Notice first that W W ere exchangeable and hence f(wl, e vn)

1, l.l’
is permutation invariant. Fix w3, sees Wy end define
A ={wl=wl’ w2=w2’ w3=w3, eo ey Wn=wn}-

Wl ,W2

To show that f is Schur-concave, we must show that

P(Awl,w2) - P(Awi,wé) (2.4)
whenever
(wl, wa) 3 (wi, wé).

i.e. whenever

*
0<B<asw (2.5)
where
* ) * . #
W, =V +a.,w2=w-a,wi=w +B,w2=v - B.

The following classes of subsets of {1, ..., n}, will help us to
divide the elements of A into those that contain both 1 and 2, and those
that do not contain either 1 or 2, and those that contain exactly one of

1 and 2. Define

V={v: v is a subset of size (k - 2) from {3, ..., n}},

U= {u: uis a subset of size (k - 1) from {3, ..., n}},




and

8 = {s: s is a subset of size k from {3, ..., n}}.

Any A in Ak is of the form 12v, lu, 2u, or s. Fix npumbers Xiop0 V€ v, X s
s € S and X, s ue U and define the event B as follows:

B = {xlzv =X, VE V, X, =x_,s¢€8, xlu +E,. * axu, ueU}. (2.6)
Let
2Y =X, -X,,uelU.

Then the density function of {Yu, u € U} conditional on B is

Ef("u i yu)f(xu - yu)

2 (2.7)
yu,\zﬁU ‘Tll[f(xu +y )8 (x, -y,)]

and the conditional probability of A given B is
wl ’wa

R N R P R PP R Y WO D Ty

ng(xu * g0 - )

! u
Ly, =0
; ng(xu + yu)f(xu- yu)
Yyou J
P(Avl’walB)‘ = {if vy = Zx12v + Exu + zxs’ J= 3 sesp 8

v: Jev u: Jeu s: Jes

and v. = ix12v + ixu
v u

0 othervise.

\

Now, for each x , f(xu + yu)f(x“ - yu) is symmetric and log-concave in y, .

The numerator in the expression for P(A" - |B) is therefore a convolution
1°7°¢




|
of symmetric log~concave densities and hence, from Theorem 1 of Karlin and

Proschan [4], is symmetric and log-concave in a. Thus if (2.5) is satisTied,

we obtain

P(A, _ IB) s (A, ,IB).

e b
Inequality (2.4) now follows by unconditioning, and thus we have esta-

blished that f is schur-concave. I|

We now give the proof of the main theorem.

Proof of Theorem 2.1. Let

xgk)= zxx ,i=l, ...D,k 2, evesy N

i
A: AeAk and ie)

tet X9 = G, ), ke, ey n, X (g e %) o

$85 4 a gt

>

Z =X+ :

From Lemma 2.3, the density functions of z‘z), Sherey z‘n) are ali Schur-

concéive. Since the density function of Z is the convolution of a DT
density and several Schur~concave densities, it follows from Theorems

1.6 and 1.7 that the density function of Z is DT. ||

3. APPLICATIONS TO MULTIVARIATE POISSON DISTRIBUTIONS

|
In this section we present several applications of Theorem 2.1. 5
|

3.1. MULTIVARIATE POISSON. The multivariate Poisson distribution
(cf. Teicher [5], Dwass and Teicher [1]) can be defined as follows. Let

Xi be a Poisson random variasble with mean m,, i =1, ..., n, XA be a

Poisson random variable with mean m, AeAk, k=2, ..., n, where Ak is
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given by (2.1). All the Poisson random varisbles are assumed mutually

independent. Then (2 A Zn)’ as defined by (2.2), is said to have

L
a Joint multivariate Poisson distribution.

Now we specialize further to the case where

*
m, = m, leAk, =g s {3.1)

That is, all X's with the same number (> 1) of subscripts, have a common
mean. Then, from Theorem 2.1, we conclude that the corresponding frequency

function is decreasing in transposition. That is, let m = (ml, rots mn)
and let f(m, z) denote the joint probability mess function of Zl, TS Zn

(where the other means are held fixed as in (3.1)). Then when m o< ...Sm,

and z ¥ z', we have f(m, 2) = fim, 2').

3.2. COMPOUND MULTIVARIATE POISSON. The compound multivariate
Poisson distribution described below generalizesthe compound bivariate
Poisson distribution considered by Holgate [2] in the context of certain

ecological situations. Let Z Z oy Zn denote the number of individuals of

1 A
type 1, 2, ..., n, respectively, in a quadrat of land. Ve suppose that these
individuals arise from independent clusters and assume that the number of clus-
ters N is a Poisson random variasble with parameter A. In cluster j, there are

n ¥
Bexte | ix :

k=2 A: AeAk and ieA

individuals of type i, i =1, ..., n,

A e e it
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whera xg, xi, e s k=2, ..., n, are independent Poisson random veri-

ables with parameters W, m k=2, ..., n, respectively, nd satisfying

A!

*
m = m for X € Ak’ k=2, ..., n for each cluster j. We have already
stated that the clusters are assumed to be independent. Thus

g? = (Zi, AT Zg) has & multivariate Poisson distribution. The vector

Z of the number of individuals of the different types in the quadrat is

given by

and is said to have a compound multivariate Poisson distribution. We aow show that

the density of Z is DT. Conditional on N = No, Z is the sum of NO Ted ol

multivariate Poisson vectors and therefore is multivariete Poisson from
the infinite divisibility of the multivariate Poisson established.by.Dwass

and Teicher [1]. Thus the conditional density of 2, given N = NO, is

DT. By unconditioning, the density of Z is also DT. This proof also
shows that the random number of clusters N, could be any random variable

taking values on the positive integers.

L. APPLICATIONS TO RELIABILITY PROBLEMS
In this section we show sample applications of Theorem 2.1 in some

commonly occurring religbility models.

4.1. NUMBER OF SHOCKS EXPERIENCED BY COMPONENTS OF SYSTEM. Consi=~
der a system of n components experiencing successive shocks of various

types over time, each shock affecting one or more components. More speci-




i

fically, in a fixed interval of time, let Xi be the number of shocks af-
fecting component i alone (i =1, 2, ..., n), XiJ the number of shocks

affecting components i and J simultaneously and no other eomponents

{1 54 < dsn)y the number of shocks affecting all n com-

3 Xl2...n
3 ponents simultaneously. Let (Zl, Sl Zn) be defined as in (2.2). Then
Zi denotes the total number of shocks experienced by component

i, i=1, ..., n. Assume that (Xl, PR Xn), {XA’ A€ Ak}, k=080 ek T

satisfx the conditions of Theorem 2.1. Then we conclude that the joint

frequency function of (Zl, Sl Zn) is DT.

k L.2., CUMULATION OF DAMAGE. We consider a model similar to that of
L.,1. However, now we study the damage accumulated by each component as

a result of the shocks simultaneously affecting the various subsets of

components. Let Di be the damage accumulated by component i as a result

of shocks affecting component i aione (i =1, ..., n), Di be the damage

J

accumulated by components i and j as a result of shocks affecting compo-

nents i and j simultaneously, but no other components (1 < i < J <n), ...,

and D12 A be the damage accumulated by each of the components as a re-

sult of shocks affecting all components simultaneously. Assume that the

Joint distribution of D = (Dl’ Uy Dn) has a DT density function, that

DA’ A e Ak has a common log concave density function fk’ K& 2y veus D

Assume further that D; {DA’ A€ Ak}, k=2, ..., n are mutually dependent.




g, T

Define:

T, 0+ f b e T VR
k=2 A: AeAk,ieA

Ti represents the total damage to component i accruing from all shocks

affecting component i (and possibly affecting other components simultane-
ously), 1 =1, .5 De
From Theorem 2.1 we conclude that the joint probability density of

T

15 seey T 18 DT

4.3. COMPONENT DOWN TIMES. Suppose that an n-component system is
subject to repair (replacement). If any component fails, the system fails
and the repair (replacement) time for that component is recorded. Like-
wise, if any subset of components fails sipmultaneously, the system fails,
and the time it takes to repair (replace) each of the components in that
subset is recorded. For example, the operating record of a two-component

system is exhibited in Fig. L.l btelow.

et S | et s T

Component 1 — Repair ~— Repair Repair |
—8—f —7—f —10—

Component 2 t Repair — Repair —— - Repeir |
— 5 —f—8— F—7— F—10—

System }— Down - Down — Down: — Down |
0 Time t

4.1. Operating Record of a Two-Component System
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Figure 4.1 indicates that a total of 4 repair (replacement) periods occurred
during [0, t]: 1 period was due to the failure of component 1 alone, 1
period was due to the failure of component 2 alone, and 2 periods were
due to the simultaneous failure of components 1 and 2.

Let Ri = time devoted to repair of component i due to shocks af-

fecting component i alone (1 <i < n), RA = time devoted to repair of each

of components in A due to shocks affecting components in A simultaneously

and no other components, for each A € Ak’ k=2, ..., n. Assume that the

Joint distribution of R e Rn has a DT density function, that RA has &

l’

common log concave density function f, for A € A , k = 2, «..y n. Assume
k k

further that R, {RA’ A e Ak}, k=2, ..., n are mutually independent. Define

B n
si=R‘i+2 XRA A I
k=2 A: AeAk,ieA

S, represents the total time spent repairing (replacing) component i as

a result of shocks affecting component i, i =1, ..., n.
From Theorem 2.1, we conclude that the joint density function of

Sl, eo 0y Sn is DT.

NG USROS
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